Prix public : 33,00 €
– En quel sens peut-on affirmer que les racines d’un polynôme dépendent continûment des coefficients ? – Quels sont les groupes infinis (commutatifs) dont les sous-groupes stricts sont finis ? – Que dire des points de continuité d’une fonction ? – Comment « faire » un puzzle avec une pomme et, en le réassemblant autrement, obtenir la lune ? – Comment démontrer que l’espace des droites affines du plan est homéomorphe à une bande de Möbius ? Ces thèmes et une quinzaine d’autres font l’objet de problèmes destinés à la préparation des concours aux grandes écoles du niveau bac+2. Ils sont particulièrement adaptés aux étudiants des classes de MP* ou aux agrégatifs, mais aussi à tous ceux qui aiment les mathématiques et sont à la recherche de résultats parfois surprenants. Les solutions sont présentées de manière détaillée. Ces sujets peuvent servir dans des leçons d’agrégation ou faire l’objet de sujets de T.I.P.E.