Prix public : 59,00 €
Stanley propose en 1981 un nouveau problème de reconstruction pour les graphes non-orientés. Switcher en un sommet consiste à remplacer toutes les arêtes incidentes à ce sommet par des non-arêtes et vice-versa. Dans la première partie nous présenterons de nouveaux problèmes de reconstruction qui s'inspirent de, et généralisent, celui de Stanley, ainsi qu'une méthode qui permet d'établir des résultats similaires à ceux obtenus par Stanley, Ellingham et Royle, et Krasikov et Roditty dans le cas du problème de Stanley, en particulier un Lemme "à la Kelly". Dans la seconde partie nous présentons la conjecture de Hahn et Jackson, qui s'insère dans le cadre de l'étude des relations entre stables et chemins dans les graphes orientés. Hahn et Jackson conjecturent que pour tout entier naturel k, il existe un graphe de stabilité k tel que quelques soient les k-1 chemins que l'on supprime (avec leurs sommets) du graphe, la cardinalité du graphe obtenu reste k. Cette conjecture est aussi forte que possible. Nous construisons explicitement une famille infinie de tels graphes, pour tout k de la forme 2^n.3^m, où n et m sont deux entiers naturels.